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The effect of low-frequency pulsations of gas on the motion of solid particles has been studied on the basis
of numerical solution of equations of the dynamics of a monodisperse gas suspension with account for inter-
phase forces of hydrodynamic drag, virtual masses, and forces due to nonstationary effects around particles.
It is found that at certain parameters gas pulsations lead to enhancement of interphase heat transfer. The de-
pendences of the time of particle residence in a pneumochannel on the frequency of gas pulsations have been
obtained.

A thermodynamic mode of phase interaction exerts a crucial effect on the intensity of heat- and mass-transfer
processes and the efficiency of equipment operation. Fluctuations of the carrying phase can substantially affect the hy-
drodynamics and interphase heat and mass transfer in disperse systems. At certain parameters, nonstationary flows lead
to enhancement of a number of technological processes, e.g., dissolution, extraction, crystallization, combustion, etc.
Heat- and mass-transfer enhancement arises in an outer high-velocity pulsed gas flow past particles. In calculation and
designing of equipment it is important to know the laws governing the effect of fluctuations of the carrying phase on
the intensity of heat- and mass-transfer processes.

Recently, discrete-pulsed nonstationary modes of energy input to disperse systems and nonstationary wave and
resonance modes of the carrying-phase flow with a large amplitude of velocity and pressure fluctuations have been de-
veloped. Different devices are used to produce medium pulsations. One effective generator of high-temperature pulsed
gas flows is the intermittent combustion chamber. These nonstationary flows can be used for implementation of en-
ergy-conservation technologies of drying disperse materials and solutions [1–4].

A suspended state of the dispersed phase is provided by hydrodynamic drag forces. In the case of a constant
velocity of motion of particles, they are affected by forces caused by the pressure gradient, the difference of velocities,
and phase densities. In wave motion of particles, the forces caused by the nonstationary character of phase motion are
added. Among these are the force of virtual masses due to inertia effects and the "hereditary" Basset force, which
arises as a result of nonstationary effects in the carrying phase (nonstationarity of the boundary layer around particles).
A great many works [5–14] presenting the results of investigations of pulsed devices and the effect of harmonic fluc-
tuations of the carrying phase (gas or liquid) on motion and heat and mass transfer of particles are known. It should
be noted that, for the most part, these results are valid only for the case of motion of individual particles. The condi-
tion of smallness of the volumetric concentration of particles (n2 → 1) is more strict compared to the case of the ab-
sence of particle interaction; for a monodisperse mixture it can be restricted by a value of ε2 ≤ 0.3 [6]. It is
noteworthy that the results of the investigations of a pulsed motion of particles in liquids cannot be generalized di-
rectly to the motion and heat and mass transfer in a pulsed gas flow with a large amplitude of velocity fluctuations.

We consider the wave motion of a monodisperse mixture in the direction opposite to the action of the gravity
force provided that the velocity of the carrying phase (gas) changes according to the harmonic dependence

v1 = v
_

1 + v1
A
 sin (ωt) . (1)

We consider the case of the absence of phase conversions; interaction of particles can be neglected due to the
fact that the volumetric concentration of particles is not very large. Within the framework of the model of interpene-
trating continua, the volumetric concentration of the solid phase is presented as a "frozen" volumetric concentration
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ε2. The quantity ε1 corresponds to porosity. We assume that the barotropy condition holds, i.e., P = P1 = P2; this con-
dition takes place in most cases in practice.

With account for the assumptions made, the equations of nonstationary wave motion are written as follows:

ρ1ε1 
dv1

dt
 = − ρ1ε1g − ε1 

∂P

∂x
 − Fµ − Fm − FB , (2)

ρ2ε2 
dv2

dt
 = − ρ2ε2g − ε2 

∂P

∂x
 + Fµ + Fm + FB , (3)

ε1 + ε2 = 1 . (4)

The hydrodynamic drag force for an individual spherical particle is

Fµ
0
 = ξS2 

ρ1  v1 − v2  (v1 − v2)
2

 = ξ 
πd

2

8
 ρ1  v1 − v2  (v1 − v2) . (5)

The number of particles per volume unit is

n2 = 
6ε2

πd
3
 . (6)

Then, the hydrodynamic drag force for the disperse mixture is written as

Fµ = 
3

4
 
ε2

d
 ξρ1  v1 − v2  (v1 − v2) . (7)

The force of virtual masses for a particle is determined by the expression

Fm
0

 = 
1
12

 πd
3ρ1 

∂
∂t

 (v1 − v2) , (8)

for the disperse mixture it is

Fm = 
n2

12
 πd

3ρ1 
∂
∂t

 (v1 − v2) = 
1

2
 ε2 ρ1 

∂
∂t

 (v1 − v2) . (9)

The force caused by the nonstationarity of a viscous boundary layer around particles (the "hereditary" Basset force) is
found from [14]:

FB
0

 = 
3d

2

2
 √πρ1 µ1  ∫ 

0

t
∂
∂τ

 (v1 − v2) dτ
√ t − τ

 ; (10)

for the disperse mixture it is

FB = 
9ε2

πd
 √πρ1 µ1  ∫ 

0

t
∂
∂τ

 (v1 − v2) 
dτ

√ t − τ
 . (11)

Calculation of the integral entering in the expression for the Basset force complicates the solution of the problem. Fol-
lowing [13], to calculate the integral we use the theorem of the mean. Allowing for the periodic character of motion,
we take the length of one period as the upper limit of integration in expression (11). Then,
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  ∫ 
0

t′

 
d (v1 − v2)

√t′ − τ
 = 

v1 − v1 (0) − v2 + v2 (0)

√t′ − τ∗

 . (12)

Here 0 < τ∗  < t′. The mean time in first approximation is taken to be equal to τ∗  = t′/2. Since t′ = 1/f and ω = 2πf,
we obtain

FB = 
9ε2 √ρ1 µ1ω

πd
 [v1 − v1 (0) − v2 + v2 (0)] . (13)

Having expressed the pressure gradient from Eq. (2)

∂P

∂x
 = − ρ1 

dv1

dt
 − ρ1g − 

1

ε1
 (Fµ + Fm + FB) (14)

and substituted it in (3), we have

ρ2ε2 
dv2

dt
 = − (ρ2 − ρ1) ε2g + ρ1ε2 

dv1

dt
 + 

1

ε1
 (Fµ + Fm + FB) (15)

or

ρ2ε1 
dv2

dt
 = − (ρ2 − ρ1) ε1g + ρ1ε1 

dv1

dt
 + 

1

ε2
 (Fµ + Fm + FB) . (16)

Then, substituting expressions (7), (9), and (13) in (16), we obtain

dv2

dt
 = − 

2 (ρ2 − ρ1) ε1

2ρ2ε1 + ρ1
 g + 

2ε1ρ1 + ρ1

2ρ2ε1 + ρ1
 
dv1
dt

 + 
3

2
 
ξ
d

 
ρ1

2ρ2ε1 + ρ1
  v1 − v2  (v1 − v2) +

+ 
18

πd
 
√ 2πρ1 µ1f

2ρ2ε1 + ρ1
 [v1 − v1 (0) − v2 + v2 (0)] , (17)

dx
dt

 = v2 . (18)

Here the hydromechanic drag is determined with account for motion constraint by the dependences suggested by M.
A. Gol’dshtik:

ξ = C
2ξ0

 (Re
∗ ) , (19)

ξ0
 (Re

∗ ) = 
24

Re
∗  + 0.248 




1 + √1 + 

194

Re
∗




 , (20)

Re
∗
 = C Re , (21)

C = 
ε1

1 − 1.16ε2
2 ⁄ 3

 . (22)
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We consider low-frequency gas pulsations when the amplitude of medium displacement A is much larger than
the diameter of solid particles and the flow past the latter can be taken as quasi-stationary, i.e., the field of gas ve-
locities at each time instant obeys the laws governing a stationary flow. The displacement amplitude is related to the
amplitude of the vibrational speed of gas and frequency as A = v1

A ⁄ ω. Let v1
A = 10 m/sec and f = 100 Hz; conse-

quently, the displacement amplitude is 0.016 m, and for solid particles with a diameter of 1⋅10−4 m, A ⁄ d >> 1.
The equation of energy conservation is

d (ε2 ρ2e2)
dt

 = Q2 , (23)

where e2 = c2T2.
The heat flux to the particle is

q2 = πdλ1 Nu (T1 − T2) ; (24)

then

Q2 = n2q2 = 
6ε2

d
2  λ1 Nu (T1 − T2) . (25)

The equation of heat-transfer kinetics is

dT2

dt
 = 

6λ1 Nu

ρ2c2d
2

 (T1 − T2) . (26)

As has already been mentioned, in this case, the process of heat transfer can be considered as quasi-stationary
and the Nusselt number can be found from the dependence Nu = 2 + 0.55 Re0.5 Pr0.33.

The initial conditions are

t = 0 ,  x = 0 ,   v2 = 
dx
dt

 = 0 ,   T2 = T20 ,   T1 = T10 ,   v1 = v1 (0) . (27)

The time-averaged Nusselt number was determined by the expression

Nu
___

 = 
1
∆t

  ∫ 
∆t

Nu dt . (28)

The differential equations were solved by the Runge–Kutta method with a time step chosen automatically. The
main initial parameters are ρ1 = 0.746 kg/m3, ρ2 = 1800 kg/m3, T1 = 473 K, T20 = 293 K, ε1 = 0.99, c2 = 1200
J/(kg⋅K), and λ2 = 0.3 W/(m⋅K). The calculations are made for different parameters: particle diameter (0.02–1)⋅10−3 m,
frequency of gas pulsations 0.0001–500 Hz, amplitude of gas-velocity fluctuations 0–60 m/sec, and mean gas velocity
2–60 m/sec.

We consider nonstationary motion of solid particles in a pulsed gas flow, when its velocity is a periodic func-
tion of time (1), and study the effect of gas pulsations on the motion and heat transfer of the particles.

We estimate the contribution of forces affecting solid particles in a pulsed gas flow. The ratio of the forces
Fµ, Fm, and FB depends on the frequency and is determined by the ratio of the characteristic time of settling of the
quasi-stationary velocity field of the gas around a particle (tµ = d2 ⁄ ν1) to the characteristic time of variation of the
gas parameters (tω = 1/ω).

Based on [6], we estimate the components of the interphase force. Let the following parameters be set: T1 =
473 K, ρ1 = 0.75 kg/m3, µ1 = 26⋅10−5 Pa⋅sec, ω = 2πf = 2⋅3.14⋅100 = 628 1/sec. Then, tµ = 0.75d2/26⋅10−5 =
28,846d2. At d = 1 µm √ωtµ  = 0.0043, at d = 10 µm √ωtµ  = 0.043, at d = 100 µm √ωtµ  = 0.42, and at d = 1 mm
√ωtµ  = 4.2. It is seen from this analysis that as the particle size increases (the frequency of gas pulsations is con-
stant), the effect of virtual masses and the "hereditary" Basset force increases.
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It should be noted that the estimate of the contribution of forces affecting the particles given in [6] is made
on the basis of the consideration of propagation of small monochromatic waves in disperse suspensions. As the relative
Reynolds number Re = d v1 − v2  ⁄ ν1, i.e., relative velocity of flow past particles, increases, the prevailing effect on
the particle motion is exerted by inertia effects and the influence of nonstationary ("hereditary") effects in the carrying
phase is weak.

We calculated the values of the components Fµ, Fm, and FB, ∂P ⁄ ∂x of the interphase force, and Fg =
−ρ2ε2g at different particle diameters in the steady-state wave motion of the gas suspension. It is found that at v

_
1 =

60 m/sec, v1
A = 40 m/sec, ρ2 = 1800 kg/m3, and f = 100 Hz with an increase in the particle diameter from 100 µm

to 1 mm, the ratio of amplitudes Fm
 ⁄ Fµ increases from 0.11 to 1.7%, and the ratio FB

 ⁄ Fµ from D1.5 to 2.5%. The
hydrodynamic drag force Fµ is much larger than the Basset force, the force of virtual masses, the gravity force, and
the force caused by the pressure gradient. This is due to the large value of the relative velocity of motion of phases
in the considered case, Re = d v1 − v2 /ν1 C 10−4⋅ 100 − 60 /34.7⋅10−6 = 115. However, at v

_
1 = 2 m/sec, v1

A = 5
m/sec, ρ2 = 600 kg/m3, f = 100 Hz, and d = 1 mm, the ratio of the amplitudes Fm

 ⁄ Fµ reaches 5.7%, and FB
 ⁄ Fµ is

10.6% and 17.5% at positive and negative values, respectively. Figure 1 presents the dependences of the components
of the interphase force on time during the period of gas-phase fluctuations. It is seen that the Basset force affecting
the particles is in phase with the hydrodynamic drag force and the force of virtual masses is π/2 in anti-phase.

In the pulsed gas flow, the dispersed particles execute wavy motion; in this case, the modulus of the relative
velocity of phases  v1 − v2  takes maximum values in the wave loop (Fig. 2). The relative velocity of the phase mo-
tion increases compared with the motion of the particles in a gas stationary flow, since, in the latter case, the differ-
ence of phase velocities is substantial only in the accelerating section. As a result, large-amplitude oscillations of gas
lead to about a twofold increase of the mean Nusselt number (Nu

___
) and the heat-transfer coefficient. This is clearly

demonstrated in Fig. 3a.
It is seen from the comparison of the time-dependences of the velocities of the gas and the particles (Fig. 2)

that the amplitude of the particle velocity decreases as the particle diameter increases. In this case, the time of particle
acceleration and the length of the acceleration section increase. For larger particles (d = 1 mm), in the accelerating
section in the presence of gas pulsations the mean Nusselt number becomes smaller than in the case where there are

Fig. 1. Dependence of forces affecting the particles on time during the period
of gas oscillations (v

_
1 = 2 m/sec, v1

A = 5 m/sec, ρ2 = 600 kg/m3, d = 1⋅10−3

m, f = 100 Hz): 1) Fg; 2) Fm; 3) Fµ; 4) FB; 5) ∂P ⁄ ∂x.

Fig. 2. Dependence of the velocity of gas (1, 3) and particles (2, 4) on time
(v
_

1 = 60 m/sec): 1 and 2) v1
A = 0, 3 and 4) 40 m/sec; a) d = 1⋅10−4; b)

1⋅10−3 m.
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no gas pulsations. However, in the steady-state oscillatory mode after acceleration of particles the mean Nusselt num-
ber increases in the case of gas pulsations and exceeds about 1.5 times the Nusselt number for the case of steady-state
gas motion (Fig. 3b).

The dependence of the mean Nusselt number on the amplitude and frequency of the fluctuations of the gas
velocity is shown in Fig. 4. It is seen from the analysis that as the amplitude of the gas velocity increases, the mean
Nusselt number Nu

___
 increases and heat transfer is thus enhanced. With an increase in frequency, the number Nu

___
 in-

creases to a certain limiting value and then remains virtually constant. With an increase in the particle diameter the
value of the limiting frequency decreases. This is due to the fact smaller particles "follow" the gas flow "more ac-
tively" and the relative velocity decreases.

For technological heat exchangers, e.g., pneumopipes, the time of particle residence in the apparatus, i.e., the
time of thermoprocessing, is of importance. By virtue of this, we studied the effect of the frequency and amplitude of

Fig. 3. Dependence of the current (1, 2) and the period-mean Nusselt numbers
on time (v

_
1 = 60 m/sec): 1) v1

A = 0; 2, 3) 40 m/sec; a) d = 1⋅10−4; b)
1⋅10−3 m.

Fig. 4. Dependence of the Nusselt number on the amplitude (a) and frequency
(b) of gas-velocity fluctuations (v

_
1 = 60 m/sec): a) 1) f = 1 and 2) 100 Hz at

d = 1⋅10−4 m, 3) f = 1 Hz and 4) 100 Hz at d = 5⋅10−4 m; b) 1) d =
2⋅10−5, 2) 1⋅10−4, 3) 5⋅10−4, and 4) 1⋅10−3 m at v1

A = 40 m/sec.

Fig. 5. Dependence of the time of particle residence in the apparatus on the
frequency of gas-velocity fluctuations: 1) d = 1⋅10−3 m, v

_
1 = 10 m/sec, and

v1
A = 40 m/sec; 2) 1⋅10−3, 20, and 40; 3) 1⋅10−3, 20, and 20; 4) 1⋅10−4, 20,

and 20, respectively.
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fluctuations of the gas velocity on the time of flow of the particles until they reach a height of xf = 20 m, i.e., the
time of particle residence on the section [0, xf] (or in a vertical 20-m-long pneumochannel). The dependence of the
residence time on the frequency of fluctuations of the gas velocity is presented in Fig. 5, from which it is seen that
tres substantially decreases with an increase in the frequency of gas pulsations, then it sharply increases and remains
virtually constant. Within the studied range of parameters, the time of particle residence at large frequencies does not
exceed its values at small frequencies. For particles with a diameter of 1 mm, a decrease in the amplitude of gas-ve-
locity fluctuations (from 40 to 20 m/sec) leads to a decrease in the residence time (curves 2 and 3). The time tres also
decreases with a decrease in the particle diameter and an increase in the mean velocity of the gas flow.

The dependences obtained can be useful in designing apparatuses with pulsed input of gas.
This work was done with financial support from the Foundation for Fundamental Research of the Republic of

Belarus (grant No. T00-048).

NOTATION

A, amplitude of gas-phase displacement, m; c, heat capacity, J/(kg⋅K); d, particle diameter, m; e2, internal en-
ergy, J/kg; f, frequency, Hz; Fn, force of interphase interaction [caused by hydrodynamic drag (n = µ), effect of virtual
mass (n = m), nonstationarity of the boundary layer around particles (n = B), and the force of gravity (n = g)],
N/m3; g, free-fall acceleration, m/sec2; n2, counted concentration of particles, m−3; P, pressure, Pa; q2 and Q2, heat
fluxes related to one particle and the dispersed mixture, W and W/m3; S2, area of the midsection of a particle, m2; t,
time, sec; t′, period of oscillations, sec; T, temperature, K; v, velocity, m/sec; x, vertical coordinate, m; ε1, porosity;
λ, thermal conductivity; W/(m⋅K); µ and ν, dynamic and kinematic viscosity of the gas, Pa⋅sec and m2/sec; ξ, hydro-
dynamic drag; ρ, density, kg/m3; τ, time (0 ≤ τ ≤ t), sec; ω, angular frequency, rad/sec; Nu, Pr, and Re, Nusselt,
Prandtl, and Reynolds numbers. Indices: 1 and 2, gas and solid particles, respectively; A, amplitude; f, finite value;
zero (subscript), initial value, zero (superscript), a value per particle; res, residence; overbar, mean value; ∗ , half-period;
m, mass; B, Basset.
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